您好!欢迎访问南通立凯机电工程有限公司网站!海恒科研仪器,科技创新的得力助手,让科研变得更简单、更可靠!
专注于超临界流体设备,新能源开发装置的研发制作好的产品除了安全、技术、质量过硬,服务更要及时到位
全国咨询热线:0513-80132480
联系我们

【 微信扫码咨询 】

0513-80132480

13382355107

SFEY-02超临界醇凝胶干燥装置

SFE-02超临界醇凝胶干燥装置是超临界干燥设备的常用规格之一,SFEY-02超临界干燥设备

在线咨询全国服务热线
0513-80132480

一、设备概述
    SiO2气凝胶是由胶体粒子或高聚物分子相互聚结构成的纳米多孔网络固态非晶材料,其多孔率可达到80-99.8%,比表面积可高达800-1000m2/g以上。气凝胶具有很低的密度,当前制备出的气凝胶的密度可以达到0.003g/cm3,其密度仅为空气的三倍,被称为“固体烟”。目前SiO2气凝胶的制备通常包含溶胶-凝胶和干燥两个过程,而干燥方法通常采用超临界干燥。在溶胶-凝胶过程中有机硅醇盐通过水解与缩聚反应形成具有微细网络孔洞结构的凝胶,利用超临界干燥过程则可以在保持原有结构的前提下去除凝胶内的大量液体而制得气凝胶。但超临界干燥过程需要高压设备且条件控制非常苛刻,因而气凝胶的制备成本昂贵,危险性大,限制了块状气凝胶的大规模推广应用。
    SiO2气凝胶是一种新型的结构可控的孔状材料,具有多种独特的性质,例如低的折射率、低的弹性模量、低声阻抗、低热导率、强吸附性、典型的分形结构等,可被制作成声阻抗耦合材料、过滤材料、高温隔热材料等多种高性能材料,在切仑可夫探测器、催化剂及催化剂载体、宽带减反射、可充电电池、防眩光涂层、低介电常数绝缘层、超高速集成电路基片、高激光损伤阈值增透薄膜、绝热涂层等众多领域,都具有广阔的应用前景。
    溶胶-凝胶过程中溶胶粒子先聚集形成一个个团簇,这些团簇不断扩大且相互连接形成网络状的大团簇,当扩展到整个容器即得到凝胶。凝胶形成后并不等于溶胶-凝胶过程结束,还要经过一系列后处理(包括:老化、防开裂、干燥等)才能得到性能独特的气凝胶。
    凝胶形成后,溶液中的溶胶粒子和小凝胶团簇继续聚集粘连,从而扩展到整个凝胶络,该过程即为老化。这些老化过程是使凝胶网络变粗、变滑、总体比表面积下降,网络的孔径分布、组成网络的胶体颗粒半径的分布变窄。
    在凝胶的后处理过程中将不可避免的引起凝胶表面的开裂,而导致凝胶开裂的应力主要源于毛细管压力,这种由填充于凝胶骨架孔隙中的液体的表面张力所引起的毛细管压力,使凝胶收紧重排、体积收缩。可以采用以下几种措施减少干燥过程中的开裂程度:
(1)减小溶剂的表面张力
    在反应过程中经水解和缩聚形成的醇凝胶,其网络孔洞中充满的溶剂主要是水和醇,由于水的表面张力很大,因此在干燥过程中毛细管的附加压力很大,这是造成气凝胶制备过程中开裂破碎的直接原因。如果通过溶剂替换,用表面张力小的溶剂将水和醇替换出来,这些表面张力小的溶剂蒸发干燥时,附加压力将大大减小,从而降低干燥过程中的开裂。
(2)改善凝胶中孔洞的均匀性
    由于有机金属化合物直接水解和缩聚得到的凝胶网络结构一般不可能形成得非常均匀,这就造成凝胶内部的孔道有粗有细,这样在同一块凝胶内部应力的不均衡往往造成凝胶在干燥过程中的开裂或粉碎。因此在溶胶-凝胶过程中添加控制干燥的化学添加剂,它能促使醇凝胶的网络孔道均匀,产生比较均匀的凝胶孔结构,从而可以减少干燥过程中凝胶破裂的可能性,缩短干燥周期。
(3)凝胶的表面修饰
    如果对醇凝胶的表面进行修饰改善,调节和控制凝胶表面羟基的数量和表面电性,使凝胶骨架表面具有一定的憎水性,从而使骨架和溶剂之间的接触角增大,这样就能大大减小毛细管附加压力,进而减少干燥过程中的开裂程度。
二、主要技术参数
    干燥釜:2L/30MPa,300℃
    分离器1L/20MPa,85℃
    总功率:5kW

I. Overview of equipment

SiO2 _ 2 aerogel is a nano-porous network solid-state amorphous material which is composed of colloidal particles or polymer molecules. Its porosity can reach 80-99.8% and its specific surface area can be as high as 800-1000m2/g or more. Aerogels have very low density, and the density of aerogels prepared at present can reach 0.003g/cm3, which is only three times that of air, so it is called "solid smoke". At present, the preparation of SiO2 _ 2 aerogels usually includes sol-gel and drying, and the drying method usually adopts supercritical drying. In the sol-gel process, silicone alkoxide forms gel with fine network pore structure through hydrolysis and polycondensation, and aerogel can be prepared by removing a large amount of liquid in the gel under the premise of maintaining the original structure by supercritical drying. However, the supercritical drying process needs high-pressure equipment and the conditions are very strict, so the preparation of aerogels is expensive and dangerous, which limits the large-scale popularization and application of bulk aerogels.

SiO2 _ 2 aerogel is a new type of porous material with controllable structure, which has many unique properties, such as low refractive index, low elastic modulus, low acoustic impedance, low thermal conductivity, strong adsorption, typical fractal structure, etc. It can be made into a variety of high-performance materials, such as acoustic impedance coupling materials, filter materials, high-temperature thermal insulation materials, and can be used in Cherenkov detectors, catalysts and catalyst carriers, broadband antireflection, rechargeable batteries, anti-glare coatings, and low-temperature insulation materials.

In the process of sol-gel, sol particles first gather to form clusters, and these clusters expand and connect with each other to form network-like clusters, and when they extend to the whole container, the gel is obtained. Gel formation does not mean the end of the sol-gel process, and aerogels with unique properties can only be obtained after a series of post-treatments (including aging, cracking prevention, drying, etc.).

After the gel is formed, the sol particles and small gel clusters in the solution continue to aggregate and adhere, thus extending to the whole gel network, which is the process of aging. These aging processes make the gel network coarsened, slippery, the overall specific surface area decreased, and the pore size distribution of the network and the radius distribution of colloidal particles forming the network narrowed.

In the post-treatment process of gel, it will inevitably lead to the cracking of gel surface, and the stress leading to gel cracking mainly comes from capillary pressure, which is caused by the surface tension of liquid filled in the pores of gel skeleton, making the gel tighten, rearrange and shrink in volume. The following measures can be taken to reduce the degree of cracking during drying:

(1) reducing the surface tension of the solvent

In the process of reaction, the alcohol gel formed by hydrolysis and polycondensation is mainly filled with water and alcohol. Because of the great surface tension of water, the additional pressure of capillary is great in the drying process, which is the direct cause of cracking and breaking in the preparation of aerogel. If water and alcohol are replaced by solvents with small surface tension, the additional pressure will be greatly reduced when these solvents with small surface tension are evaporated and dried, thus reducing the cracking during drying.

(2) improving the uniformity of holes in the gel.

Because the gel network structure obtained by direct hydrolysis and polycondensation of organometallic compounds is generally impossible to form very uniform, the pores in the gel are coarse and fine, so the uneven stress in the same gel often leads to cracking or crushing of the gel during drying. Therefore, adding chemical additives to control drying in the sol-gel process can make the network pores of alcohol gel uniform and produce a relatively uniform gel pore structure, thus reducing the possibility of gel breakage during drying and shortening the drying cycle.

(3) Surface modification of gel

If the surface of alcohol gel is modified and improved, the number of hydroxyl groups on the gel surface and the surface electrical properties are adjusted and controlled, so that the surface of the gel skeleton has certain hydrophobicity, and the contact angle between the skeleton and the solvent is increased, so that the additional pressure of the capillary can be greatly reduced, and the cracking degree in the drying process can be reduced.

Second, the main technical parameters

Drying kettle: 2L/30MPa, 300℃

Separator 1L/20MPa, 85℃

Total power: 5kW

南通立凯机电工程有限公司专业设计、制造、销售超临界流体设备和石油科研仪器。产品主要包括:
    超临界二氧化碳萃取设备、超临界气凝胶干燥设备、超临界细微粒子制备装置、超临界清洗发泡装置、超临界抗溶剂结晶装置、高温高压磁搅拌反应装置、超临界相平衡仪等。
    岩心自动剖切机、岩心钻取机、岩心钻切机、液氮冷冻钻取机、液氮冷冻切割机、疏松岩心装备装置、岩心端面切磨机、岩心端面切割机、台式切片机、切样机、岩矿切片机、磨片机、单、双盘金相岩相抛光机、颚式破碎机、自动研磨机、岩心快速洗油仪、填砂压实装置、人造岩心制作装置、含粘土人造岩心制作装置、岩心﹙油、水﹚抽空加压饱和实验装置、渗透率自动测定仪、气体渗透率测定仪、全直径岩心渗透率测定仪、克氏渗透率测定仪、氦孔隙度自动测定仪、气体孔隙度测定仪、全直径孔隙度测定仪、气体孔渗联测仪、致密岩心孔渗测定仪、全直径孔渗联测仪、高温覆压孔渗测定仪、岩心饱和度干馏仪、煤岩心测量系统、岩心饱和度干馏仪、全直径岩心饱和度测定仪﹙蒸馏法﹚、碳酸盐含量测定仪﹙表压式﹚、碳酸盐含量测定仪﹙数显式﹚、岩石比面测定仪、岩心流动试验仪、低渗敏感性评价仪、长岩心梯度流动试验仪、特低渗岩心启动压力梯度测量系统、岩心声波综合测试仪、岩心声电渗参数测定仪、岩心电阻率参数测定仪、多功能岩心驱替装置、润湿性测定仪、高压半渗透隔板仪、油、水相对渗透率测定仪、气液相对渗透率仪、高温高压相对渗透率自动测定仪、岩心孔隙铸体仪、岩心力学性能测试系统、长岩心物理模型、多功能综合驱油装置、多维多功能化学驱物理模拟系统、全自动长岩心双管试验装置、聚合物续凝实验装置、天然气水合物的形成及开采、蒸汽驱油试验装置、超临界CO2驱油实验装置、泡沫驱多功能物理模拟实验装置、微观驱物理模拟装置、多层长岩心驱替装置、油藏条件下多功能驱替系统、一维火烧油层实验装置、三维火烧油层实验装置、采油化学剂评价实验装置、天然气水合物抑制评价实验装置、微生物驱油试验装置、振动采油室内模拟试验装置、凝胶转变压力测定仪、全自动过滤因子测定装置、混相仪、动态结垢评价仪、微型蒸汽发生器、油水自动计量装置、油气水自动计量装置、油气水三相自动计量装置、岩心酸化流动试验仪、压裂酸化工作液动滤失仪、堵水调剖流动性能评价仪、支撑剂裂缝导流测试系统、酸蚀裂缝导流仪、酸岩反应旋转岩盘仪、智能高温高压页膨胀仪、高温高压失水仪、动态高温高压养护釜、井壁稳定性模拟实验装置、钻井液高温高压密度特性实验装置、高温高压动态堵漏模拟装置、地层流体高压物性分析仪、深井取样器、原油快速脱水器、原油动态结蜡仪、原油含蜡测定仪、铜板腐蚀试验仪、挂片动态腐蚀仪、活塞式高压配样器、活塞式储样筒、储样筒、岩心夹持器、多测压点岩心夹持器、电阻率岩心夹持器、声电渗岩心夹持器、高温高压岩心夹持器、全直径岩心夹持器、金属填砂模型管、长岩心模型、非金属填砂模型管、径向流岩心夹持器、碳酸盐测定夹持器、孔隙度测定夹持器、动滤失岩心夹持器、双渗模型、达西定律模型、平面径向流模型、一维线性流模型、水电模拟实验装置、ZR中间容器、HC活塞耐酸容器、有机玻璃容器、高压观察窗容器、高温高压反应釜、视窗反应釜、压力调节器、回压阀、手动计量泵、手摇泵、电动计量泵、高压恒速泵、恒压恒速泵、双缸气体增压泵、采样器、加氢高压微反装置、小型固定流化床反应装置、催化反应设备、液固非均相催化反应装置、催化剂反应活性评价装置。
    高压水平阀、垂直阀、三通阀、四通阀、六通阀、单向阀、变丝接头、保护接头、死堵、接管压帽、卡环、仪表接头、高压快速接头、软管接头、取样器转样接头、内卡套过滤器、气瓶接头、手拧式快速接头、双卡套直通球阀、双卡套角式球阀、双卡套快开阀、软密封四通管接头、卡套式直通截止阀、卡套式直通节流止阀、卡套式角式截止阀、卡套式角式节流阀、卡套式角式截止阀、卡套式拧入管接头、卡套式焊接管接头、卡套式中间三通管接头、岩心夹持器专用皮套等。


在线客服
联系方式

热线电话

13382355107

上班时间

周一到周五

公司电话

0513-80132480

二维码
线